Question			Answer	Marks	Guidance
1	(a)		Difference: Velocity / vector has direction (and speed does not) or speed / scalar does not have direction (velocity has) Similarity: Both have the same unit / both have $\mathrm{m} \mathrm{s}^{-1}$ (as the unit) / both have magnitudes	B1 B1	Not 'velocity is a vector / speed is a scalar' since it is stated in the question
	(b)	(i)	$\begin{aligned} & \text { distance }=2 \times \pi \times 0.60(=3.77 \mathrm{~m}) / \text { speed }=\frac{3.77}{12} \\ & \text { speed }=0.31\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: Answer to 3 sf is $0.314\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(ii)	$\begin{aligned} & s^{2}=0.60^{2}+0.60^{2} \\ & s=0.85(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Answer to 3 sf is 0.849 (m) Note: 0.72 scores 1 mark (square root omitted)
		(iii)	The (change in) displacement is zero	B1	
		(iv)	The direction changes (even though the magnitude is the same)	B1	
			Total	8	

Question		Answer	Marks	Guidance
2	(a)	$\begin{aligned} & a=3600 / 1200 \\ & a=3.0\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	B1	Allow 1 sf answer (Ignore sign)
	(b)	$\begin{aligned} & v^{2}=u^{2}+2 a s \\ & 0=18^{2}+(2 \times-3.0 \times s) \quad l \quad s=\frac{18^{2}}{6.0} \\ & s=54(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf
	(c)	(The distance is) greater There is a component of the weight of the car acting down the slope / component of weight against the resistive force / reference to $W \sin \theta$ (AW) Net force is less / reference to $3600-W \sin \theta$ / (magnitude of) deceleration is smaller	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow the following for the last two B1 marks: - The same force has to do more work - Work done is the sum of initial kinetic energy and change in GPE (due to vertical downward movement)
	(d)	Reference to radio waves or microwaves (transmitted from satellites) There is a 'delay time' of signal from satellite to GPS device / car Distance (between satellite and GPS device / car) calculated using 'delay time $\times \mathrm{c}^{\prime}$ Trilateration / intersecting shells / circles / spheres (used to locate position of car)	B1 B1 B1 B1	Use ticks on Scoris to show where the marks are awarded Allow: 'delay time' of signal between satellite and GPS device / car (Not from GPS device / car to satellite) \mathscr{A} Trilateration / shell(s) / circle(s) / sphere(s) must be spelled correctly to gain the mark. Note: Allow full range of marks for other sensible alternative approaches
		Total	11	

Question			Answer	Marks	Guidance
3	(a)		acceleration = rate of change of velocity (or acceleration $=\underline{\text { change in velocity } / \text { time })}$	B1	Allow 'a $=(v-u) / t$ ' or $\Delta v / t$ if v, u and t or Δv and t are defined
(b)			Mass and (net) force	B1	
	(c)	(i)	1 acceleration 2 deceleration / negative acceleration Detail mark: Constant used in either 1 or 2 or reaches maximum height at 25 (s) or stops at 25 (s)	B1 B1 B1	Allow: velocity / speed increases Allow: velocity / speed decreases Allow: ‘uniform / same’ for 'constant'
		(ii)	```height = area under graph from 0 to 25 (s) height = 1/2 }\times25\times20 height = 2500(m)```	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow 1 mark for either 500 (m) or 2000 (m)
		(iii)	A sensible suggestion, for example: - $v^{2}=2 \times g \times 2500, v=220\left(\mathrm{~m} \mathrm{~s}^{-1}\right)-$ allow $g=10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ - For $200\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ at ground, the (maximum) height would only be $2040(\mathrm{~m})$ (with $g=9.81 \mathrm{~m} \mathrm{~s}^{-2}$) or $2000(\mathrm{~m})$ (with $g=10 \mathrm{~m} \mathrm{~s}^{-2}$) - (Burning) rocket fuel does work on the rocket (AW)	B1	
			Total	9	

Question			Answers	Marks	Guidance
4	(a)		acceleration = rate of change of velocity	B1	Allow: $a=\frac{v-u}{t}$ where $v=$ final velocity, $u=$ initial velocity and $t=$ time Allow: 'acceleration = change in velocity over time' Not: 'acceleration = rate of change of speed' Not: mixture of quantity and unit, e.g. 'change of velocity per second'
	(b)	(i)	$\begin{aligned} & a=\frac{v-u}{t} \quad \quad \text { (Any subject) } \\ & a=\frac{0-6.0}{2400} \\ & a=(-) 2.5 \times 10^{-3}\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $a=6.0 / 2400$ Ignore sign
		(ii)	$\begin{aligned} & \text { distance }=\text { av speed } \times \text { time } \\ & \text { or } \\ & \text { distance }=3.0 \times 2400 \end{aligned} \text { or } \quad 0=6.0^{2}+2 a s ~\left(2 \times 2.5 \times 10^{-3} \times s\right) ~ 子 \begin{array}{ll} \text { distance }=7200(\mathrm{~m}) \end{array}$	C1 A1	Possible ecf. from (b)(i) Allow: $v^{2}=u^{2}+2 a s$ with $v=6.0, u=0$ and $a=0.0025$ Allow: Full credit for correct use of $s=u t+1 / 2 a t^{2}$ Note: Bald 7200 (m) scores 2 marks Allow: 1 mark for ' $s=(6 \times 2400)+1 / 2 \times 0.0025 \times 2400^{2}=$ 21600 (m)'
		(iii)	Correct shape of curve of decreasing gradient starting from 0,0 Graph passes through 40, 7.2	M1 A1	Possible e.c.f. from (b)(ii) Allow the A1 mark if x is between $5-10 \mathrm{~km}$ at 40 min
	(c)	(i)	It has (constant) acceleration / It accelerates (down the ramp)	B1	Allow: Its velocity / speed increases
		(ii)	The time taken by ball to travel between (successive) bells is the same / 'same as first trolley' / 'there is no change' (AW) Acceleration is independent of mass / acceleration is the same (for the heavier trolley) (AW)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	
			Total	11	

5	Expected Answers	Marks	Additional Guidance
a	The distance travelled (by the car) from when the driver sees a problem and the brakes are applied	B1	Note: There must be reference to 'stimulus' and brakes. Not: ‘speed \times reaction time'
b	Distance / displacement	B1	
c(i)	$\begin{aligned} & \text { distance }=20 \times 0.5 \\ & \text { distance }=10(\mathrm{~m}) \end{aligned}$	B1	
c(ii)	$\begin{aligned} & \text { distance }=\text { area under graph } \\ & \text { distance }=1 / 2 \times 20 \times 3.5 \\ & \text { distance }=35(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow 1 mark if stopping distance of 45 m quoted No marks for an answer of ' $20 \times 3.5=70(\mathrm{~m})$ '
d(i)	$\begin{aligned} & \text { gradient }=\text { 'acceleration' } / a=\frac{v-u}{t} / a=\frac{\Delta v}{\Delta t} \\ & a=(-) \frac{20}{3.5} \\ & \text { deceleration }=5.71(4) \approx 5.7\left(\mathrm{~m} \mathrm{~s}^{2}\right) \end{aligned}$	C1 A1	The first mark is for selecting correct equation or stating $a=$ gradient Note: Ignore negative sign
d(ii)	$\begin{aligned} & \text { force }=910 \times 5.71 \\ & \text { force } \approx 5200(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from (d)(i)
e	Increases by a factor of 4 Braking distance \propto speed $^{2} /$ ' $F x=1 / 2 m v^{2}$ '/ speed doubles and time doubles	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	

	Expecte d Answer	Marks	Additional Guidance
\mathbf{f}	Large deceleration / rapid decrease in speed (triggers the air bag) Prevent collision with steering wheel / windscreen / dashboard Time (for stopping) is more / distance (for stopping) is more Smaller deceleration / acceleration (of person)	B1	B1
B1	Not 'quick / sudden / rapid deceleration' Not 'large acceleration'		
A1 Allow: 'smaller rate of change of momentum'			
Not 'smaller rate of deceleration'			

