Q	Question		Answer		Guidance	
1	(a)		Difference: Velocity / vector has direction (and speed does not) or speed / scalar does not have direction (velocity has) Similarity: Both have the same unit / both have m s ⁻¹ (as the unit) / both have magnitudes	B1 B1	Not 'velocity is a vector / speed is a scalar' since it is stated in the question	
	(b)	(i)	distance = $2 \times \pi \times 0.60$ (= 3.77 m) / speed = $\frac{3.77}{12}$ speed = 0.31 (m s ⁻¹)	C1 A1	Note : Answer to 3 sf is 0.314 (m s ⁻¹)	
		(ii)	$s^2 = 0.60^2 + 0.60^2$ s = 0.85 (m)	C1 A1	Note : Answer to 3 sf is 0.849 (m) Note : 0.72 scores 1 mark (square root omitted)	
		(iii)	The (change in) displacement is zero	B1		
		(iv)	The direction changes (even though the magnitude is the same)	B1		
			Total	8		

Question	Answer		Guidance	
2 (a)	a = 3600/1200 $a = 3.0 \text{ (m s}^{-2})$	B1	Allow 1 sf answer (Ignore sign)	
(b)	$v^{2} = u^{2} + 2as$ $0 = 18^{2} + (2 \times -3.0 \times s)$ / $s = \frac{18^{2}}{6.0}$ s = 54 (m)	C1 C1 A1	Possible ecf Allow ' $v^2 = 2as$, $18^2 = 2 \times 3.0 \times s'$ Allow other approaches, examples: t = 6 (s) C1 $s = (18 \times 6.0) + \frac{1}{2} \times (-3.0) \times 6.0^2$ C1 s = 54 (m) A1 Or $\frac{1}{2}mv^2 = Fs$ C1 $\frac{1}{2} \times 1200 \times 18^2 = 3600 \times s$ C1 s = 54 (m) A1	
(c)	(The distance is) greaterThere is a component of the weight of the car acting down the slope / component of weight against the resistive force / reference to $W \sin \theta$ (AW)Net force is less / reference to 3600 – $W \sin \theta$ (magnitude of) deceleration is smaller	B1 B1 B1	 s = 54 (m) A1 Allow the following for the last two B1 marks: The same force has to do more work Work done is the sum of initial kinetic energy and change in GPE (due to vertical downward movement) 	
(d)	Reference to radio waves or microwaves (transmitted from satellites) There is a 'delay time' of signal from satellite to GPS device / car Distance (between satellite and GPS device / car) calculated using 'delay time × c' Trilateration / intersecting shells / circles / spheres (used to locate position of car)	B1 B1 B1 B1	Use ticks on Scoris to show where the marks are awarded Allow: 'delay time' of signal between satellite and GPS device / car (Not from GPS device / car to satellite) <i>Trilateration / shell(s) / circle(s) / sphere(s)</i> must be spelled correctly to gain the mark. Note: Allow full range of marks for other sensible alternative approaches	

(Question		Answer	Marks	Guidance
3	(a)		acceleration = rate of <u>change of velocity</u> (or acceleration = <u>change in velocity</u> / time)	B1	Allow ' $a = (v - u)/t$ ' or $\Delta v/t$ if v , u and t or Δv and t are defined
	(b)		Mass and (net) force	B1	
	(c)	(i)	1 acceleration	B1	Allow: velocity / speed increases
			2 deceleration / negative acceleration	B1	Allow: velocity / speed decreases
			Detail mark: Constant used in either 1 or 2 or reaches maximum height at 25 (s) or stops at 25 (s)	B1	Allow: 'uniform / same' for 'constant'
		(ii)	height = area under graph from 0 to 25 (s) height = $\frac{1}{2} \times 25 \times 200$ height = 2500 (m)	C1 C1 A1	Allow 1 mark for either 500 (m) or 2000 (m)
		(iii)	 A sensible suggestion, for example: v² = 2 × g × 2500, v = 220 (m s⁻¹) – allow g = 10 (m s⁻²) For 200 (m s⁻¹) at ground, the (maximum) height would only be 2040 (m) (with g = 9.81 m s⁻²) or 2000 (m) (with g = 10 m s⁻²) (Burning) rocket fuel does work on the rocket (AW) 	B1	
			Total	9	

Q	Question		Answers		Guidance	
4	(a)		acceleration = rate of <u>change</u> of <u>velocity</u>	B1	Allow: $a = \frac{v - u}{t}$ where $v =$ final velocity, $u =$ initial velocity and $t =$ time Allow: 'acceleration = change in <u>velocity</u> over time' Not: 'acceleration = rate of change of <u>speed'</u> Not: mixture of quantity and unit, e.g. 'change of velocity per second'	
	(b)	(i)	$a = \frac{v - u}{t}$ (Any subject)	C1 C1	Allow: $a = 6.0/2400$	
			$a = \frac{0 - 6.0}{2400}$ a = (-) 2.5 × 10 ⁻³ (m s ⁻²)	A1	Allow: $a = 6.072400$ Ignore sign	
		(ii)	distance = <u>av speed</u> × time or $v^2 = u^2 + 2as$ distance = 3.0×2400 or $0 = 6.0^2 - (2 \times 2.5 \times 10^{-3} \times s)$ distance = 7200 (m)	C1 A1	Possible ecf. from (b)(i) Allow: $v^2 = u^2 + 2as$ with $v = 6.0$, $u = 0$ and $a = 0.0025$ Allow: Full credit for correct use of $s = ut + \frac{1}{2}at^2$ Note: Bald 7200 (m) scores 2 marks Allow: 1 mark for ' $s = (6 \times 2400) + \frac{1}{2} \times 0.0025 \times 2400^2 = 21600$ (m)'	
		(iii)	Correct shape of curve of <u>decreasing</u> gradient starting from 0,0 Graph passes through 40, 7.2	M1 A1	Possible e.c.f. from (b)(ii) Allow the A1 mark if <i>x</i> is between 5-10 km at 40 min	
	(c)	(i)	It has (constant) acceleration / It accelerates (down the ramp)	B1	Allow: Its velocity / speed increases	
		(ii)	The time taken by ball to travel between (successive) bells is the same / 'same as first trolley' / 'there is no change' (AW) Acceleration is independent of mass / acceleration is the same (for the heavier trolley) (AW)	B1 B1		
			Total	11		

5	Expected Answers	Marks	Additional Guidance
a	The <u>distance</u> travelled (by the car) from when the driver sees a problem and the brakes are applied	B1	Note: There must be reference to 'stimulus' and brakes. Not: 'speed × reaction time'
b	Distance / displacement	B1	
c(i)	distance = 20×0.5 distance = 10 (m)	B1	
c(ii)	distance = area under graph		
	distance = $\frac{1}{2} \times 20 \times 3.5$	C1	
	distance = 35 (m)	A1	Allow 1 mark if stopping distance of 45 m quoted No marks for an answer of $20 \times 3.5 = 70$ (m)'
d(i)	gradient = 'acceleration' / $a = \frac{v - u}{t} / a = \frac{\Delta v}{\Delta t}$	C1	The first mark is for selecting correct equation or stating $a =$ gradient
	$a = (-)\frac{20}{3.5}$ deceleration = 5.71(4) \approx 5.7 (m s ²)	A1	Note: Ignore negative sign
d(ii)	force = 910×5.71	C1	
	force ≈ 5200 (N)	A1	Possible ecf from (d)(i)
e	Increases by a factor of 4 Braking distance \propto speed ² / ' $Fx = \frac{1}{2} mv^{2}$ ' / speed doubles <u>and</u> time doubles	B1 B1	

	Expecte d Answer	Marks	Additional Guidance
f			Must use ticks on Scoris to show where the marks are awarded
	Large deceleration / rapid decrease in speed (triggers the air bag)	B1	Not 'quick / sudden / rapid deceleration' Not 'large acceleration'
	Prevent collision with steering wheel / windscreen / dashboard	B1	
	Time (for stopping) is more / distance (for stopping) is more	B1	
	Smaller deceleration / acceleration (of person)	B1	Allow: 'smaller rate of change of momentum' Not 'smaller <u>rate</u> of deceleration'
	Total	15	